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Abstract. Employing the graded versions of the Yang–Baxter equation and the reflection
equations, we construct two kinds of integrable impurities for a small-polaron model with general
open boundary conditions: (a) we shift the spectral parameter of the local Lax operator at arbitrary
sites in the bulk and (b) we embed the impurity fermion vertex at each boundary of the chain.
The Hamiltonians with different types of impurity terms are given explicitly. The Bethe ansatz
equations, as well as the eigenvalues of the Hamiltonians, are constructed by means of the quantum
inverse scattering method. In addition, we discuss the ground-state properties in the thermodynamic
limit.

1. Introduction

The interplay between disorder and many-body interactions continues to be one of the main
topics of condensed matter physics. In one-dimensional quantum many-body systems without
disorder, the Bethe ansatz (BA) has proven to be a valuable tool, giving access to the energy
spectra and eigenstates of certain so-called integrable models [1, 2]. At first glance, it appears
that the integrability, namely the existence of infinitely many integrals of motion, seems to
preclude any applications of the method to disordered systems. However, in 1984 it was shown
[3] how one could apply the BA method to the Kondo problem [4–7] of a single magnetic
impurity in a bath of conduction electrons. Further developments led to the construction and
solution of integrable spin chains with embedded spin defects [8, 9].

A different approach to integrable impurity models was considered in [10] where
impurity vertices are introduced by varying the local interaction parameters while preserving
integrability. These studies have stimulated further investigations [11, 12] of such impurities
in various systems. The resulting models have impurity terms which couple to the charge
degrees of freedom, and look fairly similar to generic impurity terms. However, the energy
spectrum is independent of the spatial distribution of the defects, and there is no localization of
the ground-state wavefunction, unlike what is expected for generic impurities. This peculiar
behaviour can be understood by the fact that integrability implies a purely forward-scattering
mechanism at the impurities [12]. There is no reflection and thus no possibility of destructive
quantum interference which could lead to a localization.

Back-scattering can be introduced into integrable models by choosing suitable boundary
conditions (BC). Sklyanin [13] proposed a systematic approach to construct and solve
integrable quantum spin systems with open BC. Central to his method are the so-called
reflection equations (RE) [14] which are the boundary analogues of the Yang–Baxter equations
(YBE) [15]. Together, the YBE and RE imply the integrability of a model which can
then be constructed as usual by the algebraic approach of the quantum inverse scattering

0305-4470/00/213863+17$30.00 © 2000 IOP Publishing Ltd 3863



3864 X-W Guan et al

method (QISM) [16]. The finite-size corrections of the corresponding energy spectra and the
asymptotic behaviour of correlation functions follow predictions based on boundary conformal
field theory [17]. We remark that the BC of Sklyanin [13] are called ‘open’ in order to
distinguish them from the more often used periodic and the free BC. Although the term
‘open’ seems to suggest particular transmission and reflection properties, this is not necessarily
implied. The combination of open BC and integrable impurities has been considered in [5, 18–
20]. Of particular interest is the case where the forward-scattering impurity is directly coupled
to a back-scattering open boundary [19, 20]. This combination may lead to physically relevant,
yet completely integrable models.

In the present paper, we construct two kinds of integrable impurities for a fermionic small-
polaron model with general open BC. Due to the fermionic nature of the model, we employ
the graded version of the QISM [21, 22]. For well separated impurity vertices located within
the bulk, the local interaction terms involve the two neighbouring sites as usual [10]. Placing
the forward-scattering impurities at the back-scattering boundaries, we derive a Hamiltonian
with rather general boundary terms which may be interpreted as sources and sinks of particles
at the boundaries. Using the graded YBE and the graded RE, we derive the BA equations, and
obtain expressions for the eigenvalues for special cases of the Hamiltonian. In addition, we
discuss the ground-state properties in the thermodynamic limit.

The paper is organized as follows. In section 2, we introduce the small-polaron model
with general open BC. In section 3, a class of integrable impurities is constructed by shifting
the spectral parameters of local Lax operators at arbitrary sites in the bulk. By embedding
the impurity fermion vertex at each boundary of the model, we construct a class of integrable
impurities with perfect back-scattering in section 4. In section 5, we study the algebraic BA
solutions for those impurity models with density-dependent terms at the boundaries. The
ground-state properties are discussed in section 6. Section 7 is devoted to a discussion and
conclusion.

2. The small-polaron model

We consider the small-polaron model [23], which describes the motion of an additional electron
in a polar crystal. The Hamiltonian reads

H = −J
N∑
j=2

(a†
jaj−1 + a†

j−1aj ) + V
N∑
j=2

njnj−1 +W
N∑
j=1

nj

+ p+nN + α+a†
N + β+aN + p−n1 + α−a†

1 + β−a1 (2.1)

where J is proportional to the overlap integral, V denotes the electron–phonon coupling and
W is the energy of the polaron. We describe and construct the model here for arbitraryW and
V , but we shall solve it for the case W = −V . The boundary coefficients p±, α± and β± are
Grassmann variables, with p± even and α±, β± odd. Hermiticity of the Hamiltonian requires
α

†
± = β± and p†

± = p±. The fermionic creation and annihilation operators a†
j and aj satisfy

the usual anticommutation relations

{aj ,ak} = {a†
j ,a

†
k} = 0 {aj ,a†

k} = δj,k (2.2)

and nj = a†
jaj . The R-matrix and local monodromy matrix are given explicitly as [24]

R12(u1, u2) =



a′′

+ 0 0 0

0 −ib′′
− c′′ 0

0 c′′ ib′′
+ 0

0 0 0 −a′′
−


 (2.3)
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and

Lj (u) =
(
b′

+ + (ia′
+ − b′

+)nj c′aj
−ic′a†

j a′
− − (a′

− + ib′
−)nj

)
(2.4)

respectively. They satisfy the graded Yang–Baxter algebra (YBA)

R12(u1, u2)
1
T (u1)

2
T (u2) = 2

T (u2)
1
T (u1)R12(u1, u2) (2.5)

where

T (u) = LN(u) · · · L2(u)L1(u) (2.6)

and

1
X ≡ X ⊗S idV2

2
X ≡ idV1 ⊗S X. (2.7)

Here, ⊗S is the supertensor product

[A⊗S B]αβ,γ δ = (−1)[P(α)+P(γ )]P(β)AαγBβδ (2.8)

with the parity P(1) = 0, P(2) = 1 such that the R-matrix corresponds to the ‘null’ parity
case P(α)+P(β)+P(γ )+P(δ) = 0 [21]. We parametrize the coupling parameters J , V and
W as

J = 1 (2.9a)

V = −2c2(0) (2.9b)

W = 2s2(0) tan(w) + 2c2(0). (2.9c)

The entries of the R-matrix (2.3) and the monodromy matrix (2.4) are

a′′
± = ξ±1

+ (u1)ξ
∓1
+ (u2)s2(u1 − u2) (2.10a)

b′′
± = ξ±1

+ (u1)ξ
±1
+ (u2)s0(u1 − u2) (2.10b)

c′′ = c′ = s2(0) (2.10c)

a′
± = ξ±1

+ (u)s2(u) (2.10d)

b′
± = ξ∓1

+ (u)s0(u) (2.10e)

ξ±(u) = c0(u± w)

c0(u)c0(w)
(2.10f)

where we have introduced the convenient notation

sn(u) ≡ sin(u + nη) cn(u) ≡ cos(u + nη). (2.11)

Throughout this paper, we therefore useη andw for the parametrization of the model parameters
V and W .

In a previous paper [25], we proved that the model (2.1) is integrable under the conditions
that the boundary K± supermatrices

K±(u) =
(
K±

11 K±
12

K±
21 K±

22

)
(2.12)
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take the form

K−
11 = ξ+s0(u− ψ−)

[
ξ 2
−s2(u)− ξ 2

+ s−2(u)
]

(2.13a)

K−
22 = ξ−s0(u + ψ−)

[
ξ 2
−s−2(u)− ξ 2

+ s2(u)
]

(2.13b)

K−
12 = −α−s0(ψ−)s0(u)

iξ+ξ−s2
2 (0)

[
ξ 2
−s2(u)− ξ 2

+ s−2(u)
] [
ξ 2

+ s2(u)− ξ 2
−s−2(u)

]
(2.13c)

K−
21 = −β−s0(ψ−)s0(u)

is2
2 (0)

[
ξ 2
−s2(u)− ξ 2

+ s−2(u)
] [
ξ 2

+ s2(u)− ξ 2
−s−2(u)

]
(2.13d)

K+
11 = ξ+s2(u− ψ+)

[
ξ 2
−s4(u)− ξ 2

+ s0(u)
]

(2.13e)

K+
22 = ξ−s2(u + ψ+)

[
ξ 2

+ s4(u)− ξ 2
−s0(u)

]
(2.13f)

K+
12 = −α+s0(ψ+)s2(u)

iξ+ξ−s2
2 (0)

[
ξ 2
−s4(u)− ξ 2

+ s0(u)
] [
ξ 2

+ s4(u)− ξ 2
−s0(u)

]
(2.13g)

K+
21 = −β+s0(ψ+)s2(u)

is2
2 (0)

[
ξ 2
−s4(u)− ξ 2

+ s0(u)
] [
ξ 2

+ s4(u)− ξ 2
−s0(u)

]
. (2.13h)

Here we would like to emphasize that although we [25] construct the general boundary K-
matrices (2.12) for the small-polaron model (2.1) by the Lax pair formulation, we did not
figure out the form of the RE corresponding to more general boundary K-matrices (2.12). In
the above expressions, we further defined

p± = s2(0) cotψ± (2.14)

and we dropped the argument of u of the functions ξ± (equations (2.10f )) for convenience.
The parameters ψ± control the strength of the boundary potential terms, whereas α± and
β± in (2.13a)–(2.13h) are the parameters characterizing the fermion sources and sinks at the
boundaries. The Hamiltonian (2.1) can be obtained as usual as an invariant of the commuting
family of transfer matrices τ (u)

τ (u) = Str0[K+(u)T (u)K−(u)T −1(−u)] (2.15)

by taking the derivative at a special value of the spectral parameter u. Namely,

−s2(0) d

du
τ (u)

∣∣∣∣
u=0

= 2Hτ (0) + Str0

(
d

du
K+(u)

∣∣∣∣
u=0

)
(2.16)

with Str0 denoting the supertrace with respect to the auxiliary space.

3. Integrable impurities in the bulk

In this section, we construct integrable impurities which appear in the bulk part for the fermionic
small-polaron model with general open BC. If the quantumR-matrix of a fermionic system has
the difference property of spectral parameters, the associated Lax operator with an additional
parameter also satisfies the graded YBA, i.e.

R12(u1 − u2)
1
L(u1 + ν)

2
L(u2 + ν) = 2

L(u2 + ν)
1
L(u1 + ν)R12(u1 − u2). (3.1)

Therefore, one can construct a class of integrable impurities for the fermion model with both
open and periodic BC by shifting the spectral parameters of local monodromy matrices at
arbitrary sites in the bulk. The associated monodromy matrix is given as

T (u) = LN(u) · · · Lm(u + νm) · · · L1(u) (3.2a)

T −1(−u) = L−1
1 (−u) · · · L−1

m (−u + νm) · · · L−1
N (−u) (3.2b)
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where the parameter νm characterizes the impurity strength at site m. Now we suppose that
the supermatrices K± are the solutions of the graded RE [26, 27],

R12(u1 − u2)
1
K−(u1)R21(u1 + u2)

2
K−(u2)

= 2
K−(u2)R12(u1 + u2)

1
K−(u1)R21(u1 − u2) (3.3a)

R
St1iSt2
21 (−u1 + u2)

1
K

St1
+ (u1)R12(−u1 − u2 − 4η)

2
K

iSt2
+ (u2)

= 2
K

iSt2
+ (u2)R21(−u1 − u2 − 4η)

1
K

St1
+ (u1)R

St1iSt2
12 (−u1 + u2) (3.3b)

where R21(u) = PR12(u)P with the graded permutation

Pαβ,γ δ = (−1)P (α)P (β)δαδδβγ (3.4)

and iStα denotes the inverse operation of the supertransposition Stα in the space α. The R-
matrix possesses the unitary property R12(u)R21(−u) = ρ(u)I, with ρ(u) a scalar function
of u. It follows that the double-row transfer matrix (2.15) may be considered as a generating
function of the infinite family of conserved quantities when the K-matrices are solutions to
the RE (3.3a) and (3.3b). From the relation (2.16), it is not difficult to obtain the Hamiltonian
for the open fermion chain with an impurity located at site m,

H =
N∑
j=2

j �=m,m−1

Hj,j−1 + 1
2L1(0)K

′
−(0)L

−1
1 (0) +

Str0[K+(0)L′
N(0)L

−1
N (0)]

Str0[K+(0)]

+ Cm,m−1Bm,m−1 + Am,m−1Hm−1,m−2Bm,m−1 (3.5)

where

Hj,j−1 = Lj−1(0)L
′
j (0)L

−1
j (0)L

−1
j−1(0) (3.6a)

Am,m−1 = Lm−1(0)Lm(νm)L
−1
m (0)L

−1
m−1(0) (3.6b)

Bm,m−1 = Lm−1(0)Lm(0)L
−1
m (νm)L

−1
m−1(0) (3.6c)

Cm,m−1 = Lm−1(0)L
′
m(νm)L

−1
m (0)L

−1
m−1(0). (3.6d)

The prime denotes the derivative with respect to the spectral parameter u. The interactions of
the open fermion chain with the impurity are shown schematically in figure 1.

In order to simplify the algebraic calculation for the construction of such an integrable
impurity for the model (2.1), we let w = 0. The supermatrices (2.12) become (up to a

Figure 1. Graphical representation of the interactions in the chain with the impurity located at an
arbitrary site m together with boundary impurities.
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normalization)

K−(u) = 1

s0(ψ−)

( −s0(u− ψ−) α−s0(2u)
β−s0(2u) s0(u + ψ−)

)
(3.7a)

K+(u) =
(
s2(u− ψ+) α+s4(2u)

β+s4(2u) s2(u + ψ+)

)
. (3.7b)

Then we check that the supermatrices (3.7a) and (3.7b) satisfy the graded RE (3.3a) and (3.3b),
respectively. From (3.5), after some algebra, we obtain the Hamiltonian for the small-polaron
model with both general open BC and an integrable impurity located at site m as

H =
N∑
j=2

Hj,j−1 + H
(b)
1 + H

(b)
N + H

(h)
m,m−1,m−2 + H

(d)
m,m−1,m−2 + H

(c)
m,m−1,m−2 (3.8)

with

Hj,j−1 = a†
jaj−1 + a†

j−1aj + 2c2(0)njnj−1 − 2c2(0)nj (3.9a)

H
(b)
1 = − s2(0)

s0(ψ−)
[
c0(ψ−)n1 − iα− a†

1 − iβ− a1
]

(3.9b)

H
(b)
N = − s2(0)

s0(ψ+)

[
c0(ψ+)nN − iα+ a†

N − iβ+ aN
]

(3.9c)

H
(h)
m,m−1,m−2 =

{
s2(0)− s2(νm)

s2(νm)

[
a†
m−1am−2 + a†

mam−1
]

+
s0(νm)

s−2(νm)
a†
m−2am

}
+ h.c. (3.9d)

H
(d)
m,m−1,m−2 = 2c2(0)s2

0 (νm)

&(νm)

[
nmnm−2 − nmnm−1 − nm−2nm−1 + nm−1

]
(3.9e)

H
(c)
m,m−1,m−2 =

{
s0(νm)s4(0)

&(νm)

[
nma†

m−2am−1 − nm−2a
†
mam−1

]

− 2c2(0)s2
0 (νm)

&(νm)
nm−1a

†
m−2am

}
+ h.c. (3.9f)

where

&(u) ≡ s2(u)s−2(u) (3.10)

and h.c. denotes the Hermitian conjugate with (ψ±)∗ = −ψ±, η∗ = −η, ν∗ = ν. Here,
H

(b)
1 and H

(b)
N are the general boundary terms which are responsible for the sources and sinks

with particle injection and ejection at the boundaries; H
(h)
m,m−1,m−2 consists of nearest- and

next-nearest-neighbour hopping terms involving the sites m, m − 1 and m − 2; H
(d)
m,m−1,m−2

contains an on-site potential and density–density interaction terms between neighbours and
next-nearest neighbours; and H

(c)
m,m−1,m−2 involves current–density interactions (see figure 1).

The Hamiltonian in the presence of more than one impurity can easily be constructed, if the
two nearest impurities are still well separated. In this case, the Hamiltonian reduces to a sum
over the isolated impurities like in the case of the Heisenberg periodic chain [10–12].

4. Integrable impurities coupled to the boundaries

Kondo-like impurities of local impurity spins coupled to one-dimensional (1D) strongly
correlated conduction electrons have attracted much interest [5, 20], especially in the context
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of the BA solution [3]. To every complex-valued K-matrix solution of the RE (3.3a) and
(3.3b), one may construct a class of ‘regular’ solutions [28], i.e.

K̃−(u) = L(u)K−(u)L−1(−u) K̃+(u) = K+(u) (4.1)

to the same RE. In order to study Kondo impurities for 1D electron systems [20, 28], it is better
to construct ‘non-regular’, i.e. non-trivial operator-valued, solutions to the RE. Wang and co-
workers [19] constructed a class of integrable impurities coupled to each boundary of the spin- 1

2
Heisenberg XXZ chain by a special choice of boundaryK±-matrices, i.e.K± = 1. However,
in their approach the parameters characterizing the strength of the magnetic impurities—related
to our potential impurities via the customary Jordan–Wigner transformation [1]—disappear
in the Hamiltonian as well as in the BA equations. Here we present a different approach to
integrable impurities: from ‘regular’ solutions of the graded RE (3.3a) and (3.3b), we construct
a class of integrable impurities [10–12] coupled to each of the boundaries of a fermion chain
with general open BC. We stress that these impurities are not Kondo like. If we embed two
fermionic impurity vertices at the boundaries,

T (u) = Lr (u + νr)LN(u) · · · Lm(u) · · · L1(u)L)(u + ν)) (4.2a)

T −1(−u) = L−1
) (−u + ν))L

−1
1 (−u) · · · L−1

m (−u) · · · L−1
N (−u)L−1

r (−u + νr) (4.2b)

one can show that

U−(u) = T (u)K−(u)T −1(−u) (4.3)

also satisfies (3.3a) and so does the solution L)(u + ν))K−(u)L−1
) (−u + ν)). It follows that

there exists a family of transfer matrices

τ (u) = Str0[K+(u)U−(u)] (4.4)

and its members commute with each other for different spectral parameters. Similarly to
(2.16), we can formulate the explicit expression of the Hamiltonian for an open fermion chain
with boundary impurities,

H =
N∑
j=2

Hj,j−1 +
1

Str0[K+(0)]

{
Str0[K+(0)L

′
r (νr)L

−1
r (νr)]

+ Str0[K+(0)Lr (νr)L
′
N(0)L

−1
N (0)L

−1
r (νr)]

}
+ 1

2L1(0)L)(ν))K
′
−(0)L

−1
) (ν))L

−1
1 (0) + L1(0)L

′
)(ν))L

−1
) (ν))L

−1
1 (0). (4.5)

Substituting (3.7a) and (3.7b) into (4.5), the corresponding Hamiltonian is given as

H =
N∑
j=2

Hj,j−1 +
s2(0)

&(νr)s0(ψ+)

[
H

(b)
N + H (b)

r + H
(i)
N,r

]

+
s2(0)

&(ν))s0(ψ−)
[
H

(b)
1 + H

(b)
) + H

(i)
1,)

]
(4.6)

where

H
(b)
N = s0(νr)

[
s0(ψ+ − νr)nN + is2(νr)α+ a†

N + is−2(νr)β+ aN
] − c2(νr)s−2(νr)s0(ψ+)nN

(4.7a)

H (b)
r = s2(0)

[
s2(ψ+)nr − is2(νr)α+ a†

r + is−2(νr)β+ ar
]

(4.7b)
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H
(i)
N,r = −s2(0)c2(0)

[
s0(ψ+)nr − 2is0(νr)(α+ a†

r − β+ ar )
]
nN

− c2(0)
[
s2(0)s0(ψ+)nN + 2is2

0 (νr)(α+ a†
N + β+ aN)

]
nr

− s2(0)
[
s0(νr + ψ+)a

†
Nar − s0(νr − ψ+)a

†
raN

]
(4.7c)

H
(b)
1 = H

(b)
N (N → 1, r → ), ψ+ → ψ−, α+ → α−, β+ → β−, νr → −ν)) (4.7d)

H
(b)
) = H (b)

r (N → 1, r → ), ψ+ → ψ−, α+ → α−, β+ → β−, νr → −ν)) (4.7e)

H
(i)
1,) = H

(i)
N,r (N → 1, r → ), ψ+ → ψ−, α+ → α−, β+ → β−, νr → −ν)) (4.7f)

where H (b) can be interpreted as fermion sources and sinks with particle injection and ejection
at the boundaries and at the impurity sites. However, unlike the previous Hamiltonian (3.8), the
boundary parameters and impurity parameters are both involved. H (i) describes the interaction
between impurities and boundaries (see figure 2).

Figure 2. Impurities coupled to each of the boundaries.

Figure 3. Integrable impurities situated at the boundaries.

On the other hand, if we move the impurity in the bulk to each boundary of the chain as
shown in figure 3 with the monodromy matrix

T (u) = LN(u + νN) · · · Lm(u) · · · L1(u + ν1) (4.8a)

T −1(−u) = L−1
1 (−u + ν1) · · · L−1

m (−u) · · · L−1
N (−u + νN) (4.8b)

one finds that the Hamiltonian is same as (4.6) apart from the numbering

r → N N → N − 1 ) → 1 1 → 2.

Although the eigenvalues of the open chain do not depend on the position of the impurities in
the bulk due to the absence of back-scattering, the open boundary is a perfect back-scatterer
with vanishing transmission at each end of the open chain for α± = β± = 0. Moreover, it
is easy to obtain a model with the impurities coupled to each boundary together with f well
separated impurities (see figure 4) at positions mi for i = 1, . . . , f , i.e.

H =
N∑
j=2

Hj,j−1 +
s2(0)

&(νr)s0(ψ+)

[
H

(b)
N + H (b)

r + H
(i)
N,r

]

+
s2(0)

&(ν))s0(ψ−)
[
H

(b)
1 + H

(b)
) + H

(i)
1,)

]

+
f∑
i=1

(H
(h)
mi ,mi−1,mi−2 + H

(d)
mi ,mi−1,mi−2 + H

(c)
mi ,mi−1,mi−2). (4.9)
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Figure 4. Two well separated bulk impurities at sites m1 = m and m2 = m− 4 together with the
boundary impurities.

The terms H (b), H (i) are the same as in (4.7a)–(4.7f), and the terms H (c),H (d) and H (h)

are given in (3.9d)–(3.9f). To keep the Hamiltonians (3.8), (4.6) and (4.9) Hermitian, the
parameters η and ψ± must be purely imaginary, ν real and α†

± = β±. All terms in the
Hamiltonians are needed to ensure the integrability of the models. In the next section we
shall proceed with the algebraic solutions for the small-polaron model with different kinds of
impurities in the most interesting special case of perfectly back-scattering boundaries without
sources and sinks.

5. Bethe ansatz solution for finite chains

Following the method of [13, 27], we shall study the algebraic BA solutions for the open
fermion chain with different kinds of impurities. We first note that the general open BC
spoil the pseudo-vacuum state. Therefore, it seems difficult to solve the models with general
open BC by means of the QISM. We thus restrict ourselves to the simpler situation α± = 0,
β± = 0 in the following. In this case, the Hamiltonians (3.8), (4.6) and (4.9) do not contain
any Grassmannian source and sink terms and are charge conserving. Consequently, the K±
matrices of the RE are diagonal. The boundaries still contain the potential impurities and are
perfect back-scatterers. Thus these Hamiltonians are ideal for the proposed investigation of
the interplay of forward-scattering bulk impurities with backward-scattering boundaries.

Let us for simplicity first consider the Hamiltonian (4.6). In the case α± = 0, β± = 0,
the Hamiltonian (4.6) comprises

H
(b)
N = [

s2(0)c2(0)s0(ψ+)− s2
0 (νr)c0(ψ+)

]
nN (5.1a)

H (b)
r = [

s2(0)c2(0)s0(ψ+) + s2
2 (0)c0(ψ+)

]
nr (5.1b)

H
(i)
N,r = −s2(0)

[
s0(νr + ψ+)a

†
Nar − s0(νr − ψ+)a

†
raN

] − s4(0)s0(ψ+)nrnN (5.1c)

and H
(b)
1 , H

(b)
) and H

(i)
1,) follow as in (4.7d)–(4.7f). H (b) describes the boundary impurities.

H (i) contains the interaction terms with exchange coupling between the bulk and the impurities
(see figure 2). As mentioned before, this Hamiltonian conserves the particle number due to
the absence of sources and sinks with particle injection and ejection at the boundaries.

Now we proceed to establish the Bethe eigenvectors for the Hamiltonian (4.6) with (5.1a)–
(5.1c) by means of the algebraic BA [16]. Let

T (u) =
(
A B

C D

)
T −1(−u) =

(
Ā B̄

C̄ D̄

)
(5.2)

be the monodromy matrices acting on the pseudo-vacuum state defined by aj |0〉 = 0, j =
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1, . . . , N . Then we have

A|0〉 = sN0 (u)s0(u + ν))s0(u + νr)|0〉 (5.3a)

D|0〉 = sN2 (u)s2(u + ν))s2(u + νr)|0〉 (5.3b)

B|0〉 = 0 (5.3c)

C|0〉 �= 0 (5.3d)

Ā|0〉 = (−1)NsN0 (u)s0(u− ν))s0(u− νr)

δ [T (−u)] |0〉 (5.3e)

D̄|0〉 = (−1)NsN2 (u)s2(u− ν))s2(u− νr)

δ [T (−u)] |0〉 (5.3f)

B̄|0〉 = 0 (5.3g)

C̄|0〉 �= 0 (5.3h)

where the quantum determinant [29] is δ [T (−u)] = &N(u)&(u−ν))&(u−νr). Let us define

U−(u) =
(
Ã B̃

C̃ D̃

)
. (5.4)

From (4.3), we then have

Ã = 1

s0(ψ−)
[−s0(u− ψ−)AĀ + s0(u + ψ−)BC̄] (5.5a)

D̃ = 1

s0(ψ−)
[−s0(u− ψ−)CB̄ + s0(u + ψ−)DD̄]. (5.5b)

Noting the following form of the graded YBA:

2
T

−1(−u)R12(2u)
1
T (u) = 1

T (u)R12(2u)
2
T

−1(−u) (5.6)

it is possible to derive the commutation relation

BC̄ = s2(0)

s2(2u)
(D̄D − AĀ). (5.7)

With the help of the graded RE (3.3a) we obtain—after a lengthy calculation—the commutation
relations

Â(u)C̃(v) = s2(u− v)s4(u + v)

s0(u− v)s2(u + v)
C̃(v)Â(u)− s2(0)s4(2u)

s2(2u)s0(u− v)
C̃(u)Â(v)

+
s2(0)s0(2v)s4(2u)

s2(2v)s2(2u)s2(u + v)
C̃(u)D̃(v) (5.8a)

D̃(u)C̃(v) = s0(u + v)s−2(u− v)

s0(u− v)s2(u + v)
C̃(v)D̃(u) +

s2(0)s0(2v)

s0(u− v)s2(2v)
C̃(u)D̃(v)

− s2(0)

s2(u + v)
C̃(u)Â(v) (5.8b)

where we have introduced the transformation

Â(u) = Ã(u)− s2(0)

s2(2u)
D̃(u). (5.9)
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From (5.3a)–(5.3h) and (5.4), we can choose an M-particle excitation as

|/(v1 · · · vM)〉 = C̃(v1) · · · C̃(vM)|0〉. (5.10)

Using the commutation relations (5.8a) and (5.8b), one obtains the eigenvalue0 of the transfer
matrix (4.4)

τ(u)|/(v1 · · · vM)〉 = 0(u; v1 · · · vM)|/(v1 · · · vM)〉 (5.11)

where

0(u; v1 · · · vM) = − (−1)N

s2(2u)δ [T (−u)] s0(ψ−)

×
{
s2(u− ψ+)s2(u− ψ−)s0(u− ν))s0(u + ν))s0(2u)s

2N
0 (u)

×s0(u− νr)s0(u + νr)
M∏
j=1

s4(u + vj )s2(u− vj )

s0(u− vj )s2(u + vj )

+ s0(u + ψ+)s0(u + ψ−)s2(u + ν))s2(u− ν))s4(2u)s
2N
2 (u)

×s2(u + νr)s2(u− νr)

M∏
j=1

s0(u + vj )s−2(u− vj )

s0(u− vj )s2(u + vj )

}
(5.12)

provided that

s1(vj − ψ−)s1(vj − ψ+)s
2N
−1 (vj )

s−1(vj + ψ−)s−1(vj + ψ+)s
2N
1 (vj )

=
∏
m=),r

s1(vj + νm)s1(vj − νm)

s−1(vj + νm)s−1(vj − νm)

M∏
k=1
k �=j

s−2(vj + vk)s−2(vj − vk)

s2(vj + vk)s2(vj − vk)
(5.13)

for all j = 1, . . . ,M . In the above BA equations, we have shifted the parameter vj → vj −η.
From the relation (2.16), the eigenvalue E of the Hamiltonian (4.6) for α± = β± = 0 follows
as

E = −s2(0)
[

cotψ− + cotψ+ + 2(N + 1) cot 2η − 2 cot(νr − 2η)− 2 cot(ν) − 2η)

−
M∑
j=1

2s2(0)

s−1(vj )s1(vj )

]
. (5.14)

On the right-hand side of (5.14) we have dropped a multiplicative term 1/2 cos(2η) as is
customary [13]. We emphasize that the spatial position of the impurities in the chain, although
clearly important in the construction of the Hamiltonian, is irrelevant for the BA equations and
the ground-state energy [10–12]. This is the mathematical formulation of the physical absence
of backscattering for these impurities [12].

The BA equations for the Hamiltonian (4.9) can be obtained similarly as

s1(vj − ψ−)s1(vj − ψ+)s
2(N−f )
−1 (vj )

s−1(vj + ψ−)s−1(vj + ψ+)s
2(N−f )
1 (vj )

=
f,),r∏
m=1

s1(vj + νm)s1(vj − νm)

s−1(vj + νm)s−1(vj − νm)

M∏
k=1
k �=j

s−2(vj + vk)s−2(vj − vk)

s2(vj + vk)s2(vj − vk)
(5.15)
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where
∏f,),r

m=1 denotes the product over the f isolated impurities in the bulk as well as two
boundary impurities. The energy spectrum is given as

E = −s2(0)
[

cotψ− + cotψ+ + 2(N − f + 1) cot 2η − 2
f,),r∑
m=1

cot(νm − 2η)

−
M∑
j=1

2s2(0)

s−1(vj )s1(vj )

]
. (5.16)

The BA equations and the spectrum for the Hamiltonian (3.8) can be deduced from (5.15)
and (5.16), respectively, by imposing f = 1 and leaving out the terms with ν), νr from the
product and the sum. Using (5.15) and (5.16) with f = 0 and νr , νl �= 0, we can reproduce
the results for the Hamiltonian (4.6), namely, the BA equations (5.13) with energy (5.14).
Thus the Hamiltonian (4.9) contains the other two Hamiltonians as special cases, although the
construction by QISM proceeds independently. We note that care has to be paid to the varying
number of sites N when performing this procedure.

6. Ground-state properties in the thermodynamic limit

We note that the bulk terms of the Hamiltonians (3.8), (4.6) and (4.9) are equivalent to the
1D Heisenberg XXZ model with periodic BC via a Jordan–Wigner transformation. The
finite-sized corrections and thermodynamics for the XXZ model with or without boundary
magnetic fields have been studied in many papers [30, 31]. As mentioned before, the Jordan–
Wigner transformation does not preserve the boundary terms nor the impurity terms due to
its non-locality. The BA equations we obtained provide a more meaningful description of the
ground-state properties due to the presence of the boundary potential terms and the impurity
parameters. In what follows, we shall study the ground-state properties for the resulting models
following the scheme in [11, 19, 30, 31].

For convenience, let us first redefine the variable vj → ivj . Then, taking the logarithm,
we rewrite the BA equations (5.13) for the Hamiltonian (4.6) as follows:

2πIj = 2Nθ(vj , η) + θ(vj , ψ+ − η) + θ(vj , ψ− − η) + θ(vj + νr , η) + θ(vj − νr , η)

+ θ(vj + ν), η) + θ(vj − ν), η)−
M∑
k=1
k �=j

θ(vj − vk, 2η) + θ(vj + vk, 2η) (6.1)

for all j = 1, . . . ,M , where the two-body phase shift [2, 15, 16] is

θ(vj , η) = −i ln
sinh(vj + iη)

sinh(vj − iη)
= −2 arccot

(
tanh vj cot η

)
. (6.2)

We now define v−k , −vk and v0 = 0. Then the density of the roots {vj } can be defined as

ρN(v) = dZN(v)

dv
ZN = Ij

N
(6.3)

and the finite-size BA equation (6.1) becomes

ZN(v) = 1

π

{
θ(v, η) +

1

2N

[
θ(i)(v) + θ(b)(v)

] − 1

2N

M∑
k=−M

θ(v − vk, 2η)

}
(6.4)
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where

θ(i)(v) = θ(v + νr , η) + θ(v − νr , η) + θ(v + ν), η) + θ(v − ν), η) (6.5a)

θ(b)(v) = θ(v, 2η) + θ(2v, 2η) + θ(v, ψ+ − η) + θ(v, ψ− − η). (6.5b)

We note that the first two terms in (6.5b) arise due to the non-periodicity of the chain, whereas
the last two terms are due to the boundary potentials at sites 1 andN . Taking the thermodynamic
limit and differentiating (6.4) with respect to the spectral parameter v, we have

ρ∞(v) = 1

π

{
θ ′(v, η) +

1

2N

[
θ(i)

′
(v) + θ(b)

′
(v)

]} − 1

2π

∫ 0

−0
du ρ∞(u)θ ′(v − u, 2η) (6.6)

where the integration boundary 0 is determined by∫ 0

−0
ρ∞(v) dv = 2M + 1

N
+ O(N−2). (6.7)

The prime denotes the derivative with respect to v. Due to the linearity of (6.6), one may
formally solve the following three linear integral equations:

ρ(0)∞ (v) = 1

π
θ ′(v, η)− 1

2π

∫ 0

−0
du ρ(0)∞ (u)θ ′(v − u, 2η) (6.8a)

ρ(i)∞ (v) = 1

π
θ(i)

′
(v)− 1

2π

∫ 0

−0
du ρ(i)∞ (u)θ

′(v − u, 2η) (6.8b)

ρ(b)∞ (v) = 1

π
θ(b)

′
(v)− 1

2π

∫ 0

−0
du ρ(b)∞ (u)θ ′(v − u, 2η) (6.8c)

In this way, the solution of (6.6) can be expressed as

ρ∞(v) = ρ(0)∞ (v) +
1

2N

[
ρ(i)∞ (v) + ρ(b)∞ (v)

]
(6.9)

where ρ(0)∞ (v), 1
2N ρ

(i)
∞ (v) and 1

2N ρ
(b)
∞ (v) are the contributions of the bulk, the impurities and the

boundary effect to the root density, respectively. The ground-state energy (5.14) is minimized
at the cut-off 0 in the thermodynamic limit as discussed in [30, 31]. Following the argument
in [30, 31], we find the cut-off 0 = ∞ such that the particle density is M/N = 1

2 .
Using Fourier transforms, the formal solutions to the equations (6.8a)–(6.8c) read

ρ̃∞(ω, η) = 2θ̃ (ω, η)

2π + θ̃ (ω, 2η)
(6.10)

where

θ̃ (ω, η) =
∫ ∞

−∞
θ ′(v, η) eiωv dv. (6.11)

From the residue theorem, if 0 � η � π/2, we obtain

ρ(0)∞ (v) = 2

η cosh π
2η v

(6.12a)

ρ(i)∞ (v) =
∑
m=r,)

4 cosh π
2η v cosh π

2η νm

η cosh π
2η (v + νm) cosh π

2η (v − νm)
(6.12b)

ρ(b)∞ (v) = 1

2π

∫ ∞

−∞

[
ρ̃(be)

∞ (ω) + ρ̃(bp)
∞ (ω)

]
e−iωv dω (6.12c)
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where

ρ̃(be)
∞ (ω) = 2 sinh(π/2 − 2η)ω + 4 cos(πω/4) sinh(π/4 − η)ω

sinh (πω/2) + sinh(π/2 − 2η)ω
(6.13a)

ρ̃(bp)
∞ (ω) = 2 sinh(π/2 + η − ψ+)ω + 2 sinh(π/2 + η − ψ−)ω

sinh(πω/2) + sinh(π/2 − 2η)ω
. (6.13b)

Here ρ̃(be)
∞ (ω) and ρ̃(bp)

∞ (ω) are the contributions to the root density from the boundary effect
and the boundary potential terms, respectively, due to (6.5b). Then, from (5.14), we also obtain
the ground-state energy in the thermodynamic limit as

Eg = N

∫ ∞

−∞
dv

4 sin2 2η

cosh 2v − cosh 2η
ρ∞(v) + E0 (6.14)

with

E0 = −p+ − p− − 2(N + 1) cos 2η + 2 sin 2η
∑
m=r,)

cot(νm − 2η). (6.15)

The boundary energy [31] is given by

Eb =
∫ ∞

−∞
dv

2 sin2 2η

cosh 2v − cosh 2η

[
ρ(i)∞ (v) + ρ(b)∞ (v)

]
(6.16)

−p+ − p− − 2 cos 2η + 2 sin 2η
∑
m=r,)

cot(νm − 2η).

We thus note that the boundary potential terms do not only enter the expression for the ground-
state energy explicitly as −p+ − p−, but also implicitly via ρ̃(b)∞ of (6.12c).

We remark that in [19] boundary magnetic field terms, corresponding to (6.13b), do not
contribute to the root density due to the lack of free boundary parameters in the boundaryK±-
matrices. The presence of boundary potentials (magnetic fields) and the impurity parameters
changes the asymptotic behaviour of the BA equations (6.1) resulting in string solutions
different from those discussed in [31]. Indeed, either the boundary parameters p± (or ψ±)
or the impurity strength parameters νm, ν) and νr affect the boundary string solutions to the
BA equations. It is obvious that the ground-state energy of the bulk is the same as in the
periodic case [30]. In general, the boundary states are associated with complex roots of the
BA equations.

Analogously, we obtain the ground-state energy (6.14) for the Hamiltonians (3.8) and
(4.9). The differences to the ground states for these Hamiltonians are only the contributions
from the impurities expressed in ρ(i)∞ (v). Thus we obtain for the most general Hamiltonian
(4.9)

ρ(i)∞ (v) =
f,r,)∑
m=1

[
4 cosh π

2η v cosh π
2η νm

η cosh π
2η (v + νm) cosh π

2η (v − νm)

]
− f

4

η cosh π
2η v

(6.17)

E0 = −p+ − p− − 2(N + 1 − f ) cos 2η + 2 sin 2η
f,r,)∑
m=1

cot(νm − 2η). (6.18)

Further thermodynamic properties such as compressibilities and susceptibilities can be
calculated as demonstrated previously in [10, 12, 17]. Results will be presented elsewhere.
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7. Conclusions and discussion

In this paper, we have considered the interplay of integrable impurities and general open
boundary conditions for the example of the small-polaron model atW = −V . The impurities
have been constructed via inhomogeneous shifts in the spectral parameters of the Lax operators
such that the YBE are satisfied. The boundary terms are taken to obey the RE. In both cases,
we dealt with the graded version of the equations due to the fermionic nature of the particles
and the boundary terms. Thus by construction, the model remains integrable. We have shown
that this is true even when placing the impurities directly at the boundaries.

The most general boundary terms considered in (2.1) include fermionic particle source
and sink terms as well as more standard density terms. However, these linear terms in creation
and annihilation operators contain coefficients that are odd Grassmann variables. Thus a
straightforward physical interpretation appears problematic. Representing these coefficients
α±, β± as additional fermionic operators a±, a†

±, we arrive at a chain with two additional sites
but without sources and sinks.

The boundary terms coupling to the particle density can be viewed as potential impurities—
much like in the Anderson model of localization [32]—situated at the boundaries. For the
special case with only these potential impurities and the integrable impurities present, we
solve the BA equations and compute the ground-state energy in the thermodynamic limit for
half-filling. We find that the solution is possible regardless of whether the integrable impurities
are located within the bulk or at the boundaries.

The two types of impurities enter the expressions for the ground-state energy additively.
Thus the simultaneous presence of both purely forward-scattering integrable impurities and
purely reflecting boundary potential terms does not seem to change the physics in a substantial
way. We therefore do not expect to see the onset of localization as might have been anticipated
from the form of the boundary impurities.
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